
Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 1

Virtual Machine
Part I: Stack Arithmetic

Elements of Computing Systems, Nisan & Schocken, MIT Press www.idc.ac.il/tecs

Usage and Copyright Notice:

Copyright 2005 © Noam Nisan and Shimon Schocken

This presentation contains lecture materials that accompany the textbook “The Elements of
Computing Systems” by Noam Nisan & Shimon Schocken, MIT Press, 2005.

We provide both PPT and PDF versions.

The book web site, www.idc.ac.il/tecs , features 13 such presentations, one for each book
chapter. Each presentation is designed to support about 3 hours of classroom or self-study
instruction.

You are welcome to use or edit this presentation as you see fit for instructional and non-
commercial purposes.

If you use our materials, we will appreciate it if you will include in them a reference to the book’s
web site.

If you have any questions or comments, you can reach us at tecs.ta@gmail.com

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 2

Where we are at:

Assembler

Chapter 6

H.L. Language
&

Operating Sys.

abstract interface

Compiler

Chapters 10 - 11

VM Translator

Chapters 7 - 8

Computer
Architecture

Chapters 4 - 5
Gate Logic

Chapters 1 - 3 Electrical
Engineering

Physics

Virtual
Machine

abstract interface

Software
hierarchy

Assembly
Language

abstract interface

Hardware
hierarchy

Machine
Language

abstract interface

Hardware
Platform

abstract interface

Chips &
Logic Gates

abstract interface

Human
Thought

Abstract design

Chapters 9, 12

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 3

Motivation

class Main {

static int x;

function void main() {

// Input and multiply 2 numbers

var int a, b, x;

let a = Keyboard.readInt(“Enter a number”);

let b = Keyboard.readInt(“Enter a number”);

let x = mult(a,b);

return;

}

}

// Multiplies two numbers.

function int mult(int x, int y) {

var int result, j;
let result = 0; let j = y;

while not(j = 0) {

let result = result + x;

let j = j – 1;

}

return result;

}

}

class Main {

static int x;

function void main() {

// Input and multiply 2 numbers

var int a, b, x;

let a = Keyboard.readInt(“Enter a number”);

let b = Keyboard.readInt(“Enter a number”);

let x = mult(a,b);

return;

}

}

// Multiplies two numbers.

function int mult(int x, int y) {

var int result, j;
let result = 0; let j = y;

while not(j = 0) {

let result = result + x;

let j = j – 1;

}

return result;

}

}

...
@a
M=D
@b
M=0

(LOOP)
@a
D=M
@b
D=D-A
@END
D;JGT
@j
D=M
@temp
M=D+M
@j
M=M+1
@LOOP
0;JMP

(END)
@END
0;JMP
...

...
@a
M=D
@b
M=0

(LOOP)
@a
D=M
@b
D=D-A
@END
D;JGT
@j
D=M
@temp
M=D+M
@j
M=M+1
@LOOP
0;JMP

(END)
@END
0;JMP
...

Ultimate goal:

Translate high-
level programs
into executable
code.

Compiler

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 4

Compilation models

. . .

requires n m translators

hardware
platform 2

hardware
platform 1

hardware
platform m

. . .

language 1 language 2 language n

direct compilation:

.

. . .

hardware
platform 2

hardware
platform 1

hardware
platform m

. . .

language 1 language 2 language n

intermediate language

requires n + m translators

2-tier compilation:

Two-tier compilation:

� First compilation stage depends only on the details of the source language

� Second compilation stage depends only on the details of the target platform.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 5

The big picture

. . .
RISC

machine

Intermediate code

other digital platforms, each equipped
with its own VM implementation

RISC
machine
language

Hack
computer

Hack
machine
language

CISC
machine
language

CISC
machine

. . .
written in

a high-level
language

Any
computer

. . .

VM
implementation

over CISC
platforms

VM imp.
over RISC
platforms

VM imp.
over the Hack

platform
VM

emulator

Some Other
language

Jack
language

Some
compiler Some Other

compiler

Jack
compiler

. . .Some
language

. . . The intermediate code:

� The interface between
the 2 compilation stages

� Must be sufficiently
general to support many
<high-level language,
machine language> pairs

� Can be modeled as the
language of an abstract
virtual machine (VM)

� Can be implemented in
many different ways.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 6

The big picture

. . .
RISC

machine

VM language

other digital platforms, each equipped
with its VM implementation

RISC
machine
language

Hack
computer

Hack
machine
language

CISC
machine
language

CISC
machine

. . .
written in

a high-level
language

Any
computer

. . .

VM
implementation

over CISC
platforms

VM imp.
over RISC
platforms

VM imp.
over the Hack

platform

VM
emulator

Some Other
language

Jack
language

Some
compiler Some Other

compiler

Jack
compiler

. . .Some
language

. . .

Chapters
1-6

Chapters
7-8

Chapters
9-13

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 7

Lecture plan

Arithmetic / Boolean commands
add

sub

neg

eq

gt

lt

and

or

not

Memory access commands

pop x (variable)

push y (variable or constant)

Arithmetic / Boolean commands
add

sub

neg

eq

gt

lt

and

or

not

Memory access commands

pop x (variable)

push y (variable or constant)

Program flow commands

label (declaration)

goto (label)

if-goto (label)

Function calling commands

function (declaration)

call (a function)

return (from a function)

Program flow commands

label (declaration)

goto (label)

if-goto (label)

Function calling commands

function (declaration)

call (a function)

return (from a function)

This lecture Next lecture

Goal: Specify and implement a VM model and language

Method: (a) specify the abstraction (model’s constructs and commands)
(b) propose how to implement it over the Hack platform.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 8

The VM language

Our VM features a single 16-bit data type that can be used as:

� Integer

� Boolean

� Pointer.

Important:

From here till the end of this and the next lecture we describe the VM
model used in the Hack-Jack platform

Other VM models (like JVM/JRE and IL/CLR) are similar in spirit and
different in scope and details.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 9

Stack arithmetic

� Typical operation:

� Pops topmost values x,y from the stack

� Computes the value of some function f(x,y)

� Pushes the result onto the stack

(Unary operations are similar, using x and f(x) instead)

� Impact: the operands are replaced with the operation’s result

� In general: all arithmetic and Boolean operations are implemented similarly.

SP

17

9

17

4

5
SP

add

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 10

Memory access (first approximation)

a

bSP

121

5

17 push b

6

108
...

SP

121

5

17

108

Stack Memory
...

...
a

b

6

108
...

Memory
...

...

Stack

(before) (after)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 11

� Classical data structure

� Elegant and powerful

� Many implementation options.

a

b

pop a

SP

121

5

17 push b

6

108
...

SP

121

5

17

108

SP

121

5

Stack Memory
...

...

a

b

17

108
...

...

...

a

b

6

108
...

Memory
...

...

Stack

a

bSP

121

5

17

6

108
...

Stack Memory
...

...

Stack Memory

(before) (after)

Memory access (first approximation)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 12

Evaluation of arithmetic expressions
// d=(2-x)*(y+5)
push 2
push x
sub
push y
push 5
add
mult
pop d

Stack

y

SP

SP

2

5

-3

9

5

x 5

...

...

9
SP

2

SP

-3

SP

-3

9

SP

SP

-3

14 SP

-42

Memory

push 2

push x

sub

push y

push 5

add

mult

// d=(2-x)*(y+5)
push 2
push x
sub
push y
push 5
add
mult
pop d

pop d

y

x 5

...

...

9

Memory

d
...

-42

SP

Stack

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 13

Evaluation of Boolean expressions

// if (x<7) or (y=8)
push x
push 7
lt
push y
push 8
eq
or

Stack

y

SP

SP

12

7

false

8

8

x 12

...

...

8
SP

12

SP

false

SP

false

8

SP

SP

false

true SP

true

Memory

push x

push 7

lt

push y

push 8

eq

or

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 14

Arithmetic and Boolean commands (wrap-up)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 15

Memory access (motivation)

Modern programming languages normally feature the following variable kinds:

� Class level

� Static variables

� Private variables (AKA “object variabls” / “fields” / “properties”)

� Method level:

� Local variables

� Argument variables

A VM abstraction must support (at least) all these variable kinds.

The memory of our VM model consists of 8 memory segments:
static , argument , local , this , that , constant , pointer , and temp .

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 16

Memory access commands

Where i is a non-negative integer and segment is one of the following:

� static : holds values of global variables, shared by all functions in the same class

� argument : holds values of the argument variables of the current function

� local : holds values of the local variables of the current function

� this : holds values of the private (“object”) variables of the current object

� that : holds array values

� constant : holds all the constants in the range 0…32767 (pseudo memory segment)

� pointer : used to align this and that with different areas in the heap

� temp : fixed 8-entry segment that holds temporary variables for general
use; Shared by all VM functions in the program.

Command format:

pop segment i

push segment i

Command format:

pop segment i

push segment i

(Rather than pop x and push y,
as was shown in previous slides,
which was a conceptual simplification)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 17

VM programming

� VM programs are normally written by compilers, not by humans

� In order to write compilers, it helps to understand the spirit of VM
programming. So we will now see how some common programming tasks can be
implemented in the VM abstraction:

� Arithmetic task

� Object handling task

� Array handling task

Disclaimer:

These programming examples don’t belong here; They belong to the compiler
chapter, since expressing programming tasks in the VM language is the business
of the compiler (e.g., translating Java programs to Bytecode programs)

We discuss them here to give some flavor of programming at the VM level.

(One can safely skip from here to slide 21)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 18

Arithmetic example

function mult(x,y) {

int result, j;

result=0;

j=y;

while ~(j=0) {

result=result+x;

j=j-1;

}

return result;

}

function mult(x,y) {

int result, j;

result=0;

j=y;

while ~(j=0) {

result=result+x;

j=j-1;

}

return result;

}

High-level code

function mult(x,y)

push 0

pop result

push y

pop j

label loop

push j

push 0

eq

if-goto end

push result

push x

add

pop result

push j

push 1

sub

pop j

goto loop

label end

push result

return

function mult(x,y)

push 0

pop result

push y

pop j

label loop

push j

push 0

eq

if-goto end

push result

push x

add

pop result

push j

push 1

sub

pop j

goto loop

label end

push result

return

VM code (first approx.)

function mult 2

push constant 0

pop local 0

push argument 1

pop local 1

label loop

push local 1

push constant 0

eq

if-goto end

push local 0

push argument 0

add

pop local 0

push local 1

push constant 1

sub

pop local 1

goto loop

label end

push local 0

return

function mult 2

push constant 0

pop local 0

push argument 1

pop local 1

label loop

push local 1

push constant 0

eq

if-goto end

push local 0

push argument 0

add

pop local 0

push local 1

push constant 1

sub

pop local 1

goto loop

label end

push local 0

return

VM code

Just after mult(7,3) returns:

x

y

Just after mult(7,3) is entered:

SP

SP

21

7

3

0

argument

1
...

sum

j
0

0

0

local

1

Stack

Stack

...

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 19

Object handling example

/* Assume that b and r were
passed to the function as
its first two arguments.
The following code
implements the operation
b.radius=r. */

// Get b's base address:

push argument 0

// Point the this seg. to b:

pop pointer 0

// Get r's value

push argument 1

// Set b's third field to r:

pop this 2

/* Assume that b and r were
passed to the function as
its first two arguments.
The following code
implements the operation
b.radius=r . */

// Get b's base address:

push argument 0

// Point the this seg. to b:

pop pointer 0

// Get r's value

push argument 1

// Set b's third field to r:

pop this 2

120

80

50radius:

x:
y:

3color:
120

80

50

3012

3013

3014

33015

412 3012
...

...

High level program view RAM view
0

...
b

following

compilation
b

object

b
object(Actual RAM locations of program variables are

run-time dependent, and thus the addresses shown
here are arbitrary examples.)

00

1

Virtual memory segments just before
the operation b.radius=17:

3012

17

0

1
...

...
120

80

17

0

1

2

30120

1

3

3012

17

0

1

argument pointer this

...
3

(this 0
is now
alligned with
RAM[3012])

...

Virtual memory segments just after
the operation b.radius=17:

argument pointer this

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 20

Array handling example

/* Assume that bar is the

first local variable declared

in the high-level program. The
code below implements
bar[2]=19, or *(bar+2)=19. */

// Get bar's base address:

push local 0

push constant 2

add

// Set that’s base to (bar+2):

pop pointer 1

push constant 19

// *(bar+2)=19:

pop that 0

/* Assume that bar is the

first local variable declared

in the high-level program. The
code below implements
bar[2]=19 , or *(bar+2)=19 . */

// Get bar's base address:

push local 0

push constant 2

add

// Set that’s base to (bar+2):

pop pointer 1

push constant 19

// *(bar+2)=19:

pop that 0

7

53

1212

0
1

8
7

53

121

4315

4316

4317

8

4324

bar
array

...

...

...
19

High-level program view

199

3

4318

...

following

compilation 398 4315

RAM view

0
...

(Actual RAM locations of program variables are
run-time dependent, and thus the addresses shown
here are arbitrary examples.)

barbar
array

Virtual memory segments
Just before the bar[2]=19 operation:

0

1

43150

1 ...
0

1 ...
43170

1

43150

1 ...
190

1 ...

Virtual memory segments
Just after the bar[2]=19 operation:

(that 0
is now
alligned with
RAM[4317])

local pointer that local pointer that

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 21

Lecture plan

Arithmetic / Boolean commands
add

sub

neg

eq

gt

lt

and

or

not

Memory access commands

pop segment i

push segment i

Arithmetic / Boolean commands
add

sub

neg

eq

gt

lt

and

or

not

Memory access commands

pop segment i

push segment i

Program flow commands

label (declaration)

goto (label)

if-goto (label)

Function calling commands

function (declaration)

call (a function)

return (from a function)

Program flow commands

label (declaration)

goto (label)

if-goto (label)

Function calling commands

function (declaration)

call (a function)

return (from a function)

This lecture Next lecture

Goal: Specify and implement a VM model and language

Method: (a) specify the abstraction (model’s constructs and commands)
(b) propose how to implement it over the Hack platform.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 22

Implementation

VM implementation options:

� Software-based (emulation)

� Translator-based (e.g., to the Hack language)

� Hardware-based (CPU-level)

Well-known translator-based implementations:

� JVM (runs bytecode programs in the Java platform)

� CLR (runs IL programs in the .NET platform).

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 23

Our VM emulator (part of the course software suite)

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 24

VM implementation on the Hack platform

The challenge: (i) map the VM constructs on the
host RAM, and (ii) given this mapping, figure out
how to implement each VM command using
assembly commands that operate on the RAM

� local,argument,this,that : mapped on the
heap. The base addresses of these segments are
kept in LCL,ARG,THIS,THAT. Access to the i-th
entry of a segment is implemented by accessing
the segment’s (base + i) word in the RAM

� static : static variable number j in a VM file f is
implemented by the assembly language symbol
f.j (and recall that the assembler maps such
symbols to the RAM starting from address 16)

� constant : truly a virtual segment. Access to
constant i is implemented by supplying the
constant i

� pointer,temp: see the book

Exercise: given the above game rules, write the
Hack commands that implement, say,
push constant 5 and pop local 2 .

Statics

3

12

. . .

4

5

14

15

0

1

13

2

THIS

THAT

SP

LCL

ARG

TEMP

255

. . .
16

General
purpose

2047

. . .
256

2048

Stack

Heap. . .

Host
RAM

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 25

Parser module (proposed design)

Returns the second argument of the current command.
Should be called only if the current command is
C_PUSH, C_POP, C_FUNCTION, or C_CALL.

int--arg2

Returns the first argument of the current command. In
the case of C_ARITHMETIC, the command itself
(add, sub, etc.) is returned. Should not be called if the
current command is C_RETURN.

string--arg1

Returns the type of the current VM command.
C_ARITHMETIC is returned for all the arithmetic
commands.

C_ARITHMETIC,
C_PUSH, C_POP,
C_LABEL, C_GOTO,
C_IF, C_FUNCTION,
C_RETURN, C_CALL

--commandType

Reads the next command from the input and makes it
the current command. Should be called only if
hasMoreCommands() is true. Initially there is no
current command.

----advance

Are there more commands in the input?boolean--hasMoreCommands

Opens the input file/stream and gets ready to parse it.--Input file / stream
Constructor

FunctionReturnsArgumentsRoutine

Parser: Handles the parsing of a single .vm file, and encapsulates access to the input code. It reads VM commands, parses them, and
provides convenient access to their components. In addition, it removes all white space and comments.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 26

CodeWriter module (proposed design)

Comment: More routines will be added to this module in chapter 8.

Closes the output file.----Close

Writes the assembly code that is the translation of the
given command, where command is either C_PUSH
or C_POP.

--Command (C_PUSH or
C_POP),

segment (string),

index (int)

WritePushPop

Writes the assembly code that is the translation of the
given arithmetic command.

--command (string)writeArithmetic

Informs the code writer that the translation of a new
VM file is started.

--fileName (string)setFileName

Opens the output file/stream and gets ready to write
into it.

--Output file / streamConstructor

FunctionReturnsArgumentsRoutine

CodeWriter: Translates VM commands into Hack assembly code.

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 27

Perspective

� In this lecture we began the process of
building a compiler

� Modern compiler architecture:

� Front end (translates from high level language to a VM language)

� Back end (implements the VM language on a target platform)

� Brief history of virtual machines:

� 1970’s: p-Code

� 1990’s: Java’s JVM

� 2000’s: Microsoft .NET

� A full blown VM implementation typically includes a common software library
(can be viewed as a mini, portable OS).

� We will build such a mini OS later in the course.

. . .

VM language

RISC
machine
language

Hack
CISC

machine
language

. . .
written in

a high-level
language

. . .

VM
implementation

over CISC
platforms

VM imp.
over RISC
platforms

TranslatorVM
emulator

Some Other
language Jack

Some
compiler Some Other

compiler
compiler

. . .Some
language

. . .

Elements of Computing Systems, Nisan & Schocken, MIT Press, www.idc.ac.il/tecs , Chapter 7: Virutal Machine, Part I slide 28

The road ahead

Tasks:

� Complete the VM
specification and
implementation
(chapters 7,8)

� Introduce Jack, a
high-level programming
language (chapter 9)

� Build a compiler for it
(chapters 10,11)

� Finally, build a mini-OS,
i.e. a run-time library
(chapter 12).

� JVM

� Java

� Java compiler

� JRE

Conceptually
similar to: And to:

� CLR

� C#

� C# compiler

� .NET base class library

